If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(^3+160)D=0
We multiply parentheses
D^2+160D=0
a = 1; b = 160; c = 0;
Δ = b2-4ac
Δ = 1602-4·1·0
Δ = 25600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$D_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$D_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25600}=160$$D_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(160)-160}{2*1}=\frac{-320}{2} =-160 $$D_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(160)+160}{2*1}=\frac{0}{2} =0 $
| (x-40)+(x-31)=x | | (s-8)+(s+13)=(s+47) | | 2.2=8.4+y | | 3x^2+9x^2+100=0 | | x/8+10=17 | | (3x+10)^2=(3x)^2 | | 6(n-6)=4n=2 | | 5-y+3=0 | | 4x-10x+20=180 | | 4(3x+6)^((1)/(4))-12=0 | | 22=u/4-9 | | 3x-5+2x-30=180 | | 8(x+3)=8(x+9) | | 4x2=3x2x+5 | | 4y+3-2y+11=0 | | 5x+4=x+80 | | -3/4=-1/4+6/11x | | 68-3x=0 | | 40=1.6(h-2) | | -3/4=-1/4+6/11y | | (43-x)=(11-x) | | 9c=30 | | 4=b-2-3b | | 29=17+1/2x | | -6=2/3x+6 | | 5(1=+4m)-2m | | X^3-6x^2-25x=-150 | | x+22+86=180 | | w/4-9=30 | | x+7-4x=1922x | | -1/2(4w-6)=1/3(9-12w) | | -1(28-4x)=-60 |